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Abstract We show how a compound system of two entangled qubits in a non-product state
can be described in a complete way by extracting entanglement into an internal constraint
between the two qubits. By making use of a sphere model representation for the spin 1/2, we
derive a geometric model for entanglement. We illustrate our approach on 2-qubit algorithms
proposed by Deutsch, respectively Arvind. One of the advantages of the 2-qubit case is that
it allows for a nice geometrical representation of entanglement, which contributes to a more
intuitive grasp of what is going on in a 2-qubit quantum computation.
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1 Introduction

The theory of quantum computation has gained much interest over the past two decades,
both for the possible useful applications of quantum systems in computation and cryptogra-
phy, as well as for the insights it provides in the foundations of quantum mechanics. Deutsch
defined the Quantum Turing Machine and proposed the first quantum algorithm for a 2-qubit
quantum computer, which could solve a problem faster than possible on a classical digital
computer [1]. Shor presented a factoring algorithm which allows to break cryptographic
codes faster than by any known means classical possible [2]. Grover showed the existence
of a fast quantum algorithm for database search [3]. However, the actual physical implemen-
tation of quantum computers still encounters many technical problems, and up to now only
quantum computers with a limited number of qubits have been built. In this paper we ex-
plore an alternative to this search for a microscopic quantum computer, namely to consider
macroscopic models simulating a quantum computation.

We adopt an operational approach to quantum mechanics in which a physical entity is de-
scribed by its set of states, its set of properties and a relation of ‘actuality’ between these two
sets which expresses which properties are actual when the system is in a specific state [4].
Following this operational approach, it is a natural step to consider models which exhibit
‘quantum behavior’ on a structural level, even if they are not microscopic in size. This has
lead to a ‘quantum-like’ sphere model which has a structure which is isomorphic to the spin
structure for a spin 1/2 [5] and another system which entails a structure isomorphic to the
structure of two spin 1/2 in the entangled singlet state [6]. This model has been elaborated
by showing that an arbitrary tensor product state representing two entangled qubits can be
described in a complete way by a specific internal constraint between the ray or density
states of the two qubits, which describes the behavior of the state of one of the spins if mea-
surements are executed on the other spin [7]. This means that in principle one can represent
any entangled state of a 2-qubit quantum computer with this model. We illustrate this on
two quantum algorithms, the first is the algorithm of Deutsch [1] and the second is the al-
gorithm proposed by Arvind et al. [8, 9]. Since any n-qubit interaction can be decomposed
into 2-qubit gates and unary operations [10] we argue that our representation of 2-qubit en-
tanglement contributes to a better understanding of the n-qubit quantum computer. This is
very important since at this stage it is not at all clear how entanglement can be exploited in a
systematic way. In this sense, our geometric model is a step towards the better understanding
of the exploitation of 2-qubit entanglement in a quantum algorithm.

2 An Operational Approach to Quantum Mechanics

The basic notions for the description of a physical entity S are as follows [4]. First, we con-
sider that at any moment the entity S is in a (known or unknown to the observer) state p ∈ �.
Also, S has a set of properties L, defined by the set of available experiments which can be
performed on S. A property a is either ‘actual’ or ‘potential’ for the entity S, meaning that
if the property a is actual in the state p, then whenever one would perform the correspond-
ing experiment, one finds the positive outcome with certainty. Between the set of states and
(power)set of properties is a relation ξ : � → P(L) of actuality that maps each state p ∈ �

onto the set ξ(p) of those properties that are actual in this state. Depending on the nature
of the entity S, one obtains a different structure on the set of states �, the set of properties
L and the relation between these two sets. Hence, if we are only concerned with the struc-
tural behaviour of an entity, we can focus on the triple (�,L, ξ), called a State Property
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Space (SPS). If one considers the SPS of a quantum entity, one observes that the mathemat-
ical structure of the SPS obeys certain ‘quantum axioms’. Conversely, one could start from
an abstract SPS, and by imposing a suitable set of axioms one can derive a quantum struc-
ture on the set of properties, i.e. it becomes isomorphic with the Hilbert space representation
of quantum mechanics. In this operational approach, a physical system is determined by the
structure on its set of states and properties, and the actuality map ξ between these two. This
means that it is not necessary (or even meaningful) to make a distinction between quantum
and classical systems based on their size (classical macroscopic versus microscopic quan-
tum) but rather by the different structure of their SPS. Within this view various macroscopic
models have been constructed which have a quantum structure on their set of states and
properties, and a quantum probability distribution on the set of outcomes. It is one of these
models which will be used to model the 2-qubit entangled states.

3 Sphere Model for the Single Qubit

The sphere model is a generalization of the Bloch sphere representation such that also
the measurements are represented [5, 11]. In the Bloch representation, a qubit |ψ〉 =
cos θ

2 e
−iφ

2 |0〉 + sin θ
2 e

iφ
2 |1〉 is represented by the point u(1, θ,φ) = (sin θ cosφ, sin θ sinφ,

cos θ) on the surface of a 3-dimensional sphere. The main differences with the standard
use of the Bloch representation are as follows. First, in our approach all points of the
Bloch sphere represent states of the spin, such that points on the surface correspond to
pure states, while interior points correspond to density states. This is because an arbitrary
point u(r, θ,φ), r ∈ [0,1], θ ∈ [0,π ], φ ∈ [0,2π), of the Bloch sphere can be expressed as
a convex linear combination

u(r, θ,φ) = ru(1, θ,φ) + (1 − r)u(0, θ,φ)

from which follows the corresponding density state

D(r, θ,φ) = rD(1, θ,φ) + (1 − r)D(0, θ,φ)

= 1

2

(
1 + r cos θ r sin θe−iφ

r sin θeiφ 1 − r cos θ

)
.

In this expression D(1, θ,φ) = |ψ〉〈ψ | is the usual density state representation of a pure
state, while D(0, θ,φ) is the density matrix representing the center of the sphere. The spin
up state (the pure state |0〉) corresponds with the ‘North pole’ D(1,0, φ) = |0〉〈0|, while the
spin down state (hence pure state |1〉) is represented by the ‘South pole’ D(1,π,φ) = |1〉〈1|.

Next to this, the sphere model allows a representation of measurements (see Fig. 1). The
experiments eu are defined as follows. We put an elastic of length 2 centered in the origin
o of the sphere S2 between the point u and its antipode −u. Let us denote the segment
between u and −u with the interval [−u,u]. Next, the particle falls from its initial position
p orthogonally onto the interval [−u,u] in the point p′ where it stays attached to the elastic.
Then the elastic breaks randomly in some point λ ∈ (−u,u) such that two possibilities can
occur. If the elastic breaks between p′ and −u, the elastic will pull the point particle towards
u where it stays attached and the experiment is said to yield the outcome ‘spin up’. If on
the other hand the elastic breaks between u and p′, then the elastic will pull the particle
towards −u, where it stays attached, and the measurement is said to yield outcome ‘spin
down’. To make the description of the experiment eu complete, one could specify that in



Int J Theor Phys (2008) 47: 200–211 203

Fig. 1 The macroscopic
spin 1/2 model

the event that the elastic breaks at exactly the point p′ where the particle is attached, we
assume that the measurement always yields the outcome ‘spin up’. Notice however that this
event has measure zero to occur, and in such sense it is physical irrelevant with respect to the
resulting probability distribution over the set of outcomes. Let θ denote the angle between
the state p of the system and the direction u of the measurement device. The probability for
outcome ‘spin up’ is given by the length of the elastic between the projection point p′ and
the point −u, normalized by dividing by the total length of the elastic. This yields following
probability P (u | p) for the ‘spin up’ outcome and corresponding state transition from initial
state p towards final state u, eigenstate of the ‘spin up’ outcome:

P (u | p) = cos θ + 1

2
= cos2 θ

2
.

Similarly we can calculate the probability for the outcome ‘spin down’ as

P (−u | p) = 1 − cos θ

2
= sin2 θ

2
.

These probabilities coincide with the quantum probabilities for a spin experiment on
a spin- 1

2 particle. Note that if one would have knowledge about where the elastic breaks,
the measurement procedure happens deterministic. If we call eλ

u the measurement that con-
sists in performing eu and such that the elastic breaks in the point λ for some λ ∈ (−u,u),
then, each time eu is performed, it is actually one of the eλ

u that takes place. We do not con-
trol this, in the sense that the eλ

u are really ‘hidden measurements’ that we cannot choose
to perform. The probability μ(eu,p, o1) that the experiment eu gives the outcome o1 if the
entity is in state p is a randomization over the different situations where the hidden mea-
surements eλ

u gives the outcome o1 with the entity in state p. More generally, one could
regard any quantum experiment as a class of ‘hidden measurements’ such that each hidden
measurement by itself is deterministic, but a lack of knowledge about which hidden mea-
surement is actually going on leads to a lack of knowledge on the level of the measurement
outcomes, i.e. quantum probability can be explained as due to an uncontrollable (and ir-
reducible) lack of knowledge on the interaction between the measurement device and the
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system. This interpretation of quantum mechanics is called the ‘hidden measurement inter-
pretation’ of quantum mechanics. Since it locates the lack of knowledge in the measurement
interaction, it is contextual from the very start and goes beyond the reach of standard ‘no go
theorems’ for hidden variable theories for quantum mechanics [12, 13].

4 Macroscopic Model of Two Entangled Spin 1/2

Putting together two sphere models one can construct a macroscopic model for a compound
system of two entangled spin 1/2 in the singlet state [6]. The compound system consists of
two point particles in the center of two sphere models for a single spin 1/2 which are con-
nected by a rigid but extendable rod, centered in c, i.e. in the middle of the line connecting
the two point particles (see Fig. 2a). The joint experiment e(a, b) is performed as follows.
First, the two spheres reach the measurement apparatuses, with measurement direction a

respectively b chosen by the experimenter. The spin measurements ea and eb are defined
similarly as for the single sphere model. When one side is measured, the measurement ap-
paratus draws one of the entities to one of the two possible outcomes with probability 1/2
(because initially the point particle is in the center of the sphere) (see Fig. 2b). Because of
the rod the other entity is drawn toward the opposite side of the sphere as compared with
the first entity (see Fig. 2c, in which we consider for the sake of illustration the event that ea

has yielded outcome ‘spin up’). The connecting rod is then taken away and the second spin
measurement is performed (see Fig. 2d). The measurement e(a, b) has 4 possible outcomes
(a, b), (a,−b), (−a, b) and (−a,−b). One finds that the expectation value E(a, b) = −a.b,
i.e. this corresponds with the expectation value for the spin measurements along directions
a, b on a compound system of two entangled spin 1/2 particles in the singlet state [14].

Fig. 2 (a) The initial configuration of the macroscopic model of two entangled spin 1/2 in the singlet state.
(b) The measurement ea is performed on the left point particle, drawing it towards the point a. (c) By means
of the rigid rod, the right point particle is drawn towards the point −a on its sphere. Next, the connecting rod
is taken away. (d) Finally, the measurement eb is performed on the right point particle
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It should be mentioned that other proposals of macroscopic simulations of quantum-like be-
haviour have been recently published in [15, 16] (see also references to previous publications
by the same authors cited therein).

It is not obvious that the ‘faster than light aspect’ identified in the quantum experiments
is also present in the connected rod singlet model. A classical model, for example using
a rigid rod, will only describe physical interactions of causal nature, propagating with a
speed smaller than the speed of light, and hence a priori will not be able to model the
speed effects within the quantum experiment. However it is not the speed effects present
in this entanglement correlation which is vital in a quantum computation, but rather its
algebraic structure. In this sense, if one could build a model of 2-qubit entanglement (even
with ‘slower than light’ implementation), it is this possibility to implement entanglement in
the compound system which makes it non-classical, and therefore impossible to implement
by classical means.

5 Geometrical Representation of two Entangled Spin 1/2

5.1 Constraint Functions and the Schmidt Diagonal Form

In the previous section we discussed a compound system consisting of two connected sphere
models which represents the singlet state of two entangled spin 1/2. In general, in a 2-qubit
quantum algorithm the register will be in other entangled states as well. In [7] we show how
this problem is solved for the coupled sphere models by introducing constraint functions.
Let us briefly recall how these functions are introduced and some of their properties.

A system of two entangled spin 1
2 is described by means of a unit vector |ψ〉 ∈ C

2
1 ⊗ C

2
2,

which can always be written as |ψ〉 = ∑
ij λij |ei

1〉⊗|ej

2〉, where λij ∈ C, and {|ei
1〉} and {|ej

2〉}
are bases of C

2
1 and C

2
2 respectively. Following von Neumann [12], when a measurement

is performed on the first spin, it collapses into a spin state described by the unit vector
|x1〉 ∈ C

2
1 corresponding with the observed outcome, thus transforming the entangled state

|ψ〉 into (P|x1〉 ⊗ I )(|ψ〉), where P|x1〉 is the orthogonal projector on |x1〉 in C
2
1, and I is the

unit operator in C
2
2. The result is that the entangled spins end up in the product state |x1〉 ⊗∑

ij λij 〈x1, e
i
1〉|ej

2〉. This means that as a consequence of the measurement on the first spin,

collapsing its state to |x1〉, the second spin collapses to the state
∑

ij λij 〈x1, e
i
1〉|ej

2〉. In an
analogous way we can show that if a measurement is performed on the second spin, resulting
in a collapse to the state x2 ∈ C

2
2, the state of the first spin becomes

∑
ij λij 〈x2, e

j

2〉|ei
1〉.

Because of this, we arrive at the following definition.

Definition 1 (Constraint Functions) The constraint functions F12(ψ) and F21(ψ) related to
ψ are defined in the following way:

F12(ψ): C
2
1 → C

2
2 : |x1〉 �→

∑
ij

λij 〈x1, e
i
1〉|ej

2〉,

F21(ψ): C
2
2 → C

2
1 : |x2〉 �→

∑
ij

λij 〈x2, e
j

2〉|ei
1〉.

The constraint functions map the state where one of the spins collapses to by a mea-
surement to the state that the other spin collapses to under influence of the entanglement
correlation. A detailed study of the constraint functions gives us a complete picture of how
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the entanglement correlation works as an internal constraint. It can be shown that the con-
straint functions are canonically defined, i.e. the definition of F12(ψ) and F21(ψ) do not
depend on the chosen bases. Also, F21(ψ) ◦ F12(ψ) = D1(ψ) ≡ tr

C
2
1
|ψ〉〈ψ | i.e., the partial

trace density matrix over C
2
2. Similarly, F12(ψ)◦F21(ψ) = D2(ψ) is the partial trace density

matrix over C
2
1.

To derive a complete view of how entanglement works as an internal constraint for a
2-particle system, we recall the relation between the Schmidt diagonal form [17] and the
constraint functions. Let us choose the following base in C

2
1:

{|x1
1 〉,|x2

1 〉} =
{(

cos
θ

2
e−i

φ
2 , sin

θ

2
e

iφ
2

)
,

(
−i sin

θ

2
e−i

φ
2 , i cos

θ

2
e

iφ
2

)}
.

With respect to this basis, the expression for a general density matrix becomes

D1(ψ) = 1

2

(
1 + r 0

0 1 − r

)
.

Define now the following basis {|x1
2 〉,|x2

2 〉} in C
2
2

{|x1
2 〉,|x2

2 〉} =
{ √

2√
1 + r

F12(ψ)(|x1
1 〉),

√
2√

1 − r
F12(ψ)(|x2

1 〉)
}
.

One finds that |x1
2 〉 and |x2

2 〉 are normalized eigenvectors of D2(ψ) with eigenvalues 1+r
2 and

1−r
2 respectively. Therefore, with respect to the basis {|x1

2 〉, |x2
2 〉}, D2(ψ) is expressed as

D2(ψ) = 1

2

(
1 + r 0

0 1 − r

)
.

Finally, one obtains [7] that the Schmidt diagonal form of |ψ〉 is given by

|ψ〉 =
√

1 + r√
2

|x1
1 〉 ⊗ |x1

2 〉 +
√

1 − r√
2

|x2
1 〉 ⊗ |x2

2 〉.

5.2 Geometrical Representation of Entanglement

Let us remark that in general F12(ψ) does not conserve orthogonality, except for the basis
vectors {|x1

1 〉,|x2
1 〉} and in the case that ψ is a product state. Also, F12(ψ) does not conserve

the norm, since ‖F12(ψ)(|x〉)‖2 = 1
2 (1 + r cos θ). This means that we have to look at the

normalized image of a vector |x〉 = x(θ1, φ1). This vector is mapped to |y〉 = y(θ2, φ2) =
1

‖F12(ψ)(|x〉)‖F12(ψ)(|x〉). One derives the following expression:

y(θ2, φ2) · x1
2 (θ,φ) = r + cos θ1

1 + r cos θ1

from which one can deduce that straight lines containing the center o1 on the first sphere
are mapped to straight lines through the point u(r,0,0) in the second sphere. This gives
a geometrical representation of ‘stretching’ on the second sphere (see Fig. 3). Hence the
entanglement correlation is represented by a rotation (reflecting the basis vectors in the
Schmidt diagonal form) and a stretching depending on the parameter r , i.e. ‘amount of
entanglement’.
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Fig. 3 Geometrical representation of two entangled spin 1/2

Vice versa, given a general entangled state |ψ〉 expressed in the canonical basis, we can
derive the Schmidt diagonal form using the constraint functions. From the reduced den-
sity matrix D1(ψ) = F21(ψ) ◦ F12(ψ) one can calculate the basis vectors {|x1

1 〉, |x2
1 〉}, and

consequently also {|x1
2 〉, |x2

2 〉}. Also, expressing the reduced density matrix D1(ψ) in its
eigenvector basis {|x1

1 〉, |x2
1 〉} we obtain the value for the parameter r , i.e. the amount of

entanglement.

6 Geometrical Representation of 2-Qubit Algorithms

6.1 Deutsch Problem

Deutsch problem is as follows [1]: given a {0,1}-valued function f defined on a two-point
domain {0,1}, determine with a single call of the ‘oracle’ whether f is constant or balanced.
This problem cannot be solved on a classical digital computer. However, on a quantum
computer this is possible. Consider preparing a quantum register of two qubits in an input
state:

ψ0 = (H ⊗ H)|01〉 = |0〉 + |1〉√
2

⊗ |0〉 − |1〉√
2

= |00〉 + |10〉 − |01〉 − |11〉
2

. (1)

Calling the oracle corresponds with applying a suitable unitary transformation Uf which
maps |xy〉 onto Uf |xy〉 = |x(y ⊕ f (x))〉, where x, y ∈ {0,1} and ⊕ is the sum modulo 2.
Denoting f (i) = f (i)⊕1 and noticing that |f (i)〉−|f (i)〉 = (−1)f (i)(|0〉−|1〉) one obtains

that ψ1 = Uf (ψ0) = |0f (0)〉+|1f (1)〉−|0f (0)〉−|1f (1)〉
2 which can be written as a product state:

ψ1 =
(

(−1)f (0)|0〉 + (−1)f (1)|1〉√
2

)
⊗ |0〉 − |1〉√

2
. (2)

After applying a Hadamard transformation H ⊗ H on both qubits we obtain the following
state:

ψ2 = (H ⊗ H)Uf (ψ0) = (−1)f (0)[(1 − (f (0) ⊕ f (1)))|0〉 + (f (0) ⊕ f (1))|1〉] ⊗ |1〉. (3)

• If f is constant, f (0) = f (1) and the state ψ2 can be rewritten as:

ψ2,c = (−1)f (0)|0〉 ⊗ |1〉 (4)

i.e. if f is constant, then the value of the first qubit is |0〉.
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• If f is balanced, f (1) = f (0) ⊕ 1 then the state ψ2 can be rewritten as:

ψ2,b = (−1)f (0)|1〉 ⊗ |1〉 (5)

such that if f is balanced, then the first qubit is |1〉.
This shows that a quantum computer solves Deutsch problem with 1 call of the oracle.

However, it does not achieve this task by calculating both values f (0) and f (1) ‘parallel’
and compare them simultaneously, but rather by acting on the state of the 2-qubit system as
a whole.

6.2 Deutsch Problem on the Geometric Model

The intermediate states in Deutsch algorithm are given by the product states (1–5) such that
one can represent these states in a trivial way on the geometric model (no entanglement
is present, so the state of the compound system can be represented by the states of the
individual qubits by their Cartesian product). Therefore, in the next section we consider a
2-qubit algorithm exploiting non-product states, such that the geometrical representation by
two correlated sphere models becomes less trivial.

6.3 Arvind Problem

Arvind’s problem is the following [8, 9]: given a {0,1}-valued function f defined from
a 2-qubit domain space to a one-bit range space (i.e. f (x) : {0,1}2 → {0,1}), determine
with 2 calls of the ‘oracle’ whether f is even or odd. Since there are 4 possible in-
put values (00), (01), (10), (11) each of which has 2 possible output values (0,1) there
are 16 possible functions f . These can be divided into sub-classes depending on the
number of values 0 respectively 1, i.e. [0,4], [1,3], [2,2], [3,1], [4,0]. One has 8 ‘even’
functions ([0,4], [2,2], [4,0]) and 8 ‘odd’ functions ([1,3], [3,1]). On a classical com-
puter Arvind’s problem is impossible to solve, since it would require calling the oracle
four times. However, Arvind et al. have shown how to solve this problem on a quantum
computer. Again, calling the oracle corresponds with applying a unitary transformation
Uf : |x〉2-qubit → (−1)f (x)|x〉2-qubit

Uf =
⎛
⎜⎝

(−1)f (00) 0 0 0
0 (−1)f (01) 0 0
0 0 (−1)f (10) 0
0 0 0 (−1)f (11)

⎞
⎟⎠ .

There are 16 possible Uf matrices, of which 8 are separable and 8 are non-separable, i.e.
they are entangling, e.g. the matrix with diagonal entries [1,1,1,−1]. One could notice
that the subclass of even functions [0,4], [4,0], [2,2] reflects the problem of constant or
balanced functions in Deutsch problem. Hence it should come as no surprise that for even
f the matrix Uf is separable. However, for odd f the matrix Uf is non-separable such that
entanglement is necessary to solve Arvind’s problem.

Let the quantum register of two qubits be prepared in input state ψ0 = |00〉, then the
consecutive unitary transformations in Arvind’s algorithm are as follows:

ψ0 = |00〉 → (H ⊗ H)Uf (1 ⊗ H)Uf (H ⊗ H)|00〉
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from which the consecutive ‘intermediate’ states in Arvind’s algorithm can be derived. The
final state (prior to measurement) is given by:

ψ5 = 1

2
√

2

[(
(−1)f (00)+f (01) + (−1)f (10)+f (11)

)|00〉 + 2|01〉

+ (
(−1)f (00)+f (01) − (−1)f (10)+f (11)

)|10〉].
• If f is even, (−1)f (00)+f (01) = (−1)f (10)+f (11) such that the final state becomes

ψ5,e = 1√
2
(±|00〉 + |01〉).

• If f is odd, (−1)f (00)+f (01) = −(−1)f (10)+f (11) and the final state becomes

ψ5,o = 1√
2
(±|10〉 + |01〉).

It is important to notice that although ψ5,e �= ψ5,o, these states are not orthogonal, which
makes it not possible to distinguish them in the standard approach of quantum computation.
However, on a NMR based quantum computer these two states are distinguishable [9].

6.4 Arvind Problem on the Geometric Model

The density matrices for the intermediate states ψi in Arvind’s algorithm are given by:

D1(ψi) =
(

ai bi

bi 1 − ai

)
,

⎧⎪⎨
⎪⎩

ai = 1
2 , i = 1, . . . ,4;a5 = 1

4 [3 + (−1)
∑

f (ij)];
b1 = 1

2 ;b2 = b3 = 1
4 [(−1)f (00)+f (10) + (−1)f (01)+f (11)];

b4 = 1
4 [1 + (−1)

∑
f (ij)];b5 = 0.

• If f is even: (−1)f (00)+f (10) = (−1)f (01)+f (11) the reduced density matrices D1(ψi) are
given by:

D1(ψ1) =
( 1

2
1
2

1
2

1
2

)
, D1(ψ2) = D1(ψ3) =

( 1
2 (−1)f (00)+f (10) 1

2

(−1)f (00)+f (10) 1
2

1
2

)
,

D1(ψ4) =
( 1

2
1
2

1
2

1
2

)
, D1(ψ5) =

(
1 0
0 0

)

such that the set of eigenstates for each matrix D1(ψi) is given by { |0〉+|1〉√
2

,
|0〉−|1〉√

2
}, i =

1, . . . ,4; the set of eigenstates for matrix D1(ψ5) is {|0〉, |1〉}. Hence we obtain that all the
consecutive states in Arvind’s theorem are given by product states, making the represen-
tation by two coupled sphere models trivial since ‘there is no entanglement correlation’
present in these states.

• If f is odd: (−1)f (00)+f (10) = −(−1)f (01)+f (11) such that bi = 0, i = 2, . . . ,5. The reduced
density matrices D1(ψi) are hence given by:

D1(ψ1) =
( 1

2
1
2

1
2

1
2

)
, D1(ψi) =

( 1
2 0

0 1
2

)
, i = 2, . . . ,5.
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Again, ψ1 is a product state since applying the Hadamard gate on both qubits in the
ground state |00〉 results in a product state. For i = 2, . . . ,5 the reduced density matrices
D1(ψi) correspond with an entangled state, namely the singlet state. However, there is no
unique Schmidt diagonal form for the singlet state and hence no unique representation of the
intermediate states in Arvind’s algorithm on the geometric model for odd f . Nevertheless,
the fact that these are singlet states also has an unexpected advantage, because these singlet
states can be represented by the rigid rod model in a mechanistic way, making it possible to
represent Arvind’s algorithm ‘directly’ on the macroscopic singlet model.

7 Conclusions

We have shown how a compound system of two entangled qubits in a non-product state
can be described in a complete way by extracting entanglement into an internal constraint
between the two qubits. By making use of the sphere model representation for the spin 1/2,
this allows for an easy to grasp visual support for the developed formalism. The resulting
geometric model for entanglement allows for a rigorous method to follow its form and effect
in quantum computations. This is very important since at this stage it is not at all clear
how entanglement can be exploited in a systematic way. In this sense, our geometric model
is a step towards the better understanding of the exploitation of 2-qubit entanglement in
a quantum algorithm. We have discussed the 2-qubit quantum algorithms of Deutsch and
Arvind and illustrated them on the geometric model. In future work the 2-qubit models
should be generalized to the n-qubit quantum computer. Since any quantum system with
a measurable set of outcomes allows a Hidden Measurement representation [5, 18], this
approach should in principle be feasible. Also, it is still an open question whether one can
find a physical (rod-like?) implementation of the constraint functions for the non-singlet
states of the 2-qubit model and possible n-qubit generalizations thereof.
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